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Abstract

A finite displacement analysis for extension-twist coupling in pretwisted laminated composite strips is
presented. A new formulation of the kinematics is constructed by neglecting the terms of order of the square
of the maximum strain magnitude in the strain—displacement relations. The closed-form extension-twist
relationships are derived and the influence of out-of-plane shear strains on the results is estimated. The
accuracy of the model is assessed through comparison with test data and analytical predictions. © 1998
Elsevier Science Ltd. All rights reserved.

1. Introduction

Elastic tailoring of composites allows a unique flexibility to meet the design requirements
efficiently and economically. Coupling of deformation modes such as extension-twist and bending-
twist can be created in composite structures by an appropriate selection of material, geometry, and
stacking sequence. In order to implement elastic tailoring in practical applications, an accurate
prediction of their response under loading is required.

Extension-twist coupling in laminated composite strips can be created by using antisymmetric
stacking sequences. Such laminates will twist when subjected to axial load. Test data for thin strip
laminates with such stacking sequences show a nonlinear axial force-twist dependence. This is due
to the low torsional to extensional stiffness ratio and cannot be predicted using the small dis-
placement theories. In order to explain this nonlinear behavior, a finite displacement model was
developed by Armanios et al. (1996). The closed-form solution developed in this model was in
good agreement with other analytical results and test data. In developing the model, the terms in
the strain—displacement relations were classified by the order of their maximum magnitude. The
maximum magnitude of strain was denoted by e. First, the terms of order & were neglected
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compared to unity. Second, the terms of order ¢** and higher were neglected. In order to provide
a consistent analysis, it is important to investigate the influence of the higher order terms in the
strain—displacement relations on the results. This work presents a closed-form solution for the
extension-twist behavior of pretwisted thin laminated strips neglecting the terms of O(&?) and
higher in the strain—displacement relationships, and assesses the accuracy of the previous model.

2. Analysis

Consider a laminated strip shown in Fig. 1. The thickness / of the laminate is small relative to
the width 2b which is small compared to the length L. That is

h<«2b« L (H

The strip has a pretwist about the longitudinal axis X. Assume that the strains are small
(negligible compared to one) and independent of the longitudinal direction; the pretwist rate 0,
and the elastic twist rate 0 are constant; and the material is linearly elastic.

The middle surface of the strip is referred to the material coordinates x and y, while the transverse
material coordinate is denoted by z. If the strip is flat, the position vector of an arbitrary point is
defined as
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where i, j, k are the unit base vectors of the reference Cartesian coordinate system XYZ. The
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Fig. 1. Laminate geometry.
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position vector r, of a material point in the initial state is derived as follows. First, a rigid cross-
section is rotated about the X-axis. Second, the out-of-plane strains caused by the previous step
are set to zero by rotating straight line elements perpendicular to the middle surface. The result is

Iy = <x_ 90yz>f_yé20 + ;éw (3)
V1+(00y)° V14 00p)?

where
€,, = cos Goxj—i— sin 0, xk
8,0 = —sin0yxj—+cos 0,xk 4)

The position vector r of the material point in the deformed state is derived the same way as in
the initial state. However, a small displacement field is added to account for all strain components

r= <x— 6o +0)yz +u>i+(y+v)é2+< = +w>é3 (5)
V14 0,+0)°y V14+0,+0)%y?

where

&, = cos(0, + 0)xj+sin(0, + 0)xk

&, = —sin(0+0,)xj+cos(0, + 0)xk (6)
and

u=¢x+U(,z), v=V(y,z), w=W(,2) @)
are the components of the small displacement vector.

The Lagrangian strain tensor components are defined as

2e; = gy —hy ®)

where g;;and /;; are the metric tensor components in the deformed and the initial states, respectively
or Or
o= ox ox

The following limits are imposed on the maximum values of the kinematic parameters
0oh, Oh = O(¢)
(0ob)*, (0b)* = O(e)

o v
oy’ o0z’ dy’ 0z’ dy’ 0z ¢

0,V, 0,W, 0V, 0W =O0(") (10)
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where ¢ denotes the maximum magnitude of strain. The terms of O(¢?) and higher will be neglected
in the strain—displacement relations.
According to eqns (3)—(10), the out-of-plane engineering strains can be expressed as

&, = W: - (00 + H)y U,z
V=W, +V.—(0,+0)yU,
’yxz = U,:+(00+9)(_y30+sz+V_ZV,z) (11)

where the partial derivatives are denoted by commas.
Since the strip is thin, the out-of-plane shear strains are replaced by their average values with
respect to thickness

’yy: = yy:(y)v Vxz = y\z(y) (12)
Moreover, nondeformability in the z-material direction is assumed, i.c.
e..=0 (13)

Substitute eqns (12) and (13) into eqns (11), integrate the resulting expressions, and neglect the
terms of O(&?) to obtain the following linear in z form of the small displacement field

U=Uy(y)—zU(y)
V="V,(y)—zVi(y)
W= W,(y)—z(0,+0)yU,(») (14)

According to eqns (3)—(9), and (14), the engineering strain—displacement relationships take the
form
&y = &;—zky, (i,j=x,,2)

82)( =& +%(02 +200 0)y2a Kex = 0

0 _ —
ey =Vo, K=V,

e..=0

Ve = —Vi+Wo,— (0, +0)yU,,

P = = Ui+ (0 +0)(Vo —&0y)

vo = Us,+ 00 +0)(yWo,— W), Ky =U,,+20 (15)

The equilibrium equations and boundary conditions for a cantilever strip subjected to an axial
force F and a torque T can be derived using the principle of virtual work

b h/2
j dyj 606, /g dz— T80 — Féey = 0 (16)
—b —(h2)

where ¢” are the second Piola—Kirchhoff stress tensor components. Summation over the repeated
indices is assumed. The Jacobian
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ory [oOr, Or,
= (T ) = 17
V9 ox \ay ~ oz a7

if the terms of O(e) are neglected compared to unity. Denote the forces and moments per unit
length of the middle surface by

h/2
(Nxxa vaa an Qxa nya M,\‘xa Myya M,\'y) = J\ (O_xx’ O.yy) O-y:, O-(\Z, O_xy, za™ s ZU’V"V, ZUX})) dz (1 8)
—(h/2)

where the subscripts do not denote covariant tensor components.
The lateral surfaces of the strip are traction free. Therefore, at y = +b

Ny,=N,=0,=M,,=M,=0 (19)

Substitute eqns (15), (17)—(19) into eqn (16), and reduce the resulting equilibrium equations
and boundary conditions to

N,\'y = Qy = ny =0 (20)

Nyy = (90 + G)Mry (21)

Mx)uy - Qx = 0 (22)
b

J [Nxx (00 + e)yz - 2Mx)] dy = T (23)
—b
b

J [N+ (0o +0)M, ]dy = F (24)
—b

where ¢, and V,, = &), were neglected compared to one in deriving eqn (23). According to eqn
(23), eqn (24) can be written in the following form

g 0,+0)%)" 0,+6)")"
F= J [NHHQO oy, DYy Hz”zv}d
)
b 0o+ 0)*y? 0,+6
ZJ Nxx[1+(0+)y}dy—(0+)T (25)
» 2 2
Neglect [(0,+ 0)*)°]/2 compared to one to obtain
b 0,+0
J Nxxdy=F+(02+ )1 (26)
—b

It is worth noting that if the applied torque 7 is equal to zero, the boundary conditions (23) and
(26) can be derived by neglecting the terms of O(¢*?) in the strain—displacement relations (15).

Assume that the constitutive relations are given in local rectangular Cartesian coordinates.
Although the base vectors
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or, Or, 0rg
ox’ dy’ oz 27)

of the material coordinate system (x, y, z) in the initial state are not orthogonal, transformation to
the orthogonal coordinates would introduce correction of O(¢?) in the strain field as shown in
Armanios et al. (1996).
Equation (13) implies that for each lamina
Ey; > 00, viz=vy3=0 (28)

where Ei;, vi; and vy; are Young’s modulus and Poisson’s ratios associated with the transverse

material direction. Indices 1, 2, 3 denote the principal material axes. Therefore, the in-plane

components of the lamina stiffness matrix are the same as those for the plane stress state.

The constitutive relations for an antisymmetric laminate can be written in the following form

Ny (A, A, By £y
Ny; == A12 A22 B26 80 (293)
Mry _Blé Bz() D66 — Ky,
N,, [Aes  Bis B[ 72,
Mxx = BIG Dll Dl2 — Ky
M Bys Dy Dypll—xk

Qy = A44Vyza Qx = ASSV,\‘: (29b)
The stiffness parameters are defined as
h/2 _
(Aijs Bi/’: Dij) = J‘ Qi/(lzzv 22) dZ (30)
—(h/2)

where Q;; are the components of the lamina stiffness matrix in the (x, y,z)-coordinates (Vinson
and Sierakowski, 1986).

The axial force N,, and the twisting moment M, per unit length of the middle surface will be
expressed in terms of the axial strain and the twist rate. The resulting equations will be substituted
into the boundary conditions (23) and (26) to get the extension-twist relationships. It is worth
noting that the quantities

B By &2 12 53] Dy
——Oy+0), ——(0,+6), —(0,+6), —(0,+0), [—-(6,+6), 0,+0 31
00, 000, PR 0. P00, TR0, [0+ 6
where «;; and f are defined by
AL, A 2By
aII_All_Tzza Oy = Big— A,
B3,

Oy = Dgg— 4
22
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Fig. 2. Estimation of parameters.

ﬂ = Ass (32)

can be neglected compared to one for a practical material system. A numerical verification of this
observation is provided in Figs 2 and 3 where the absolute values of
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Table 1
Properties of T300/954-3 Graphite/ Cyanate
material system

E,, =135.6 GPa

E,, =99 GPa

G, =G;3;=42GPa
G,;=2.5GPa

v, =0.3

are plotted vs the ply angle o for angle ply laminates [o,/—a,] The laminates are made of ICI
Fiberite T300/954-3 Graphite/Cyanate material system with properties given in Table 1. The
absolute values of the variables in Figs 2 and 3 are of O(1). When multiplied by (6,4 6)4, as in
(31), those quantities will be of O(¢) according to eqns (10).

Substitute for N,, and M, from eqn (29a) into eqn (21) to obtain

A12_(00+9)Blé:| [326 — (6 +0)D66:|
g = — 9 — — Ky, 33
" [Azz_(eo +0)By | Ay — (0 +0) By ( ) (33)
Neglect
(0o +0)B1s (0o +0) B
> 34
A . B9
as terms of O(¢) compared to one, and rewrite eqn (33) as follows
A (0 +0)Dggx,yy B,
PO L [ggﬁ 0 i 35
" Ay | A A22\ ) (33)

One can further simplify eqn (35) by neglecting the term [(0,+ 0)Dygk,,]/ 4}, of O(&?). The result is

A B
o _ _ ‘12 o0 _ P26,
Syy - A22 gxx A22( ny) (36)
According to eqns (15) and (36), eqns (29a) and (29¢) reduce to
{Nx,\} _ |:<111 OC12:| {80 +%(82 +2909)y2} 37)
M., %2 Oao -U,,—20
A5, 5 y3 Ay, By
0.=—-plU+ Oy +60)(0°+20,0)— +<eo | 1+ ——|—20——1(0,+0)y (38)
A22 6 A22 A22

A more accurate estimate for the out-of-plane shear stiffness coefficient, f8, is derived in the
Appendix by integrating equilibrium equations through the thickness.
Substitute eqns (37) and (38) into eqn (22) to obtain
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Ay, 5 y?
U U= R0 0@ 120,07 +| 7

2 Al2

B
—20(0,+0) A“} y (39
22

Solve eqn (39) with the free edge boundary conditions

Mxy |y: +bh = O (40)
to get the following expression for the twisting curvature
cosh(sy) [, oy, b2
=U,,+20 = — gy —20+ ——(0*+2 2 41
Kx}' Ul,} + 9 COSh(Sb) |:O(22 & 0+ tss 2 (0 + 909) + 0 ( )
where
B
s= [— 42
s (42)

It is worth noting that the same result for the twisting curvature in eqn (41) could be obtained by
neglecting the terms of O(¢*?) in the strain—displacement relations (15).

Substitute eqns (41) and (37) into eqns (23) and (26), integrate, solve for ¢, and F, to obtain the
following extension-twist relationships

1 4
go(ay—00—0) = ————T+|a,— 5 a,0,+2a505 |0— (a, —3a;0,)0° +a;0°
0( 4 0 ) 2b3o(11k3 < 1 3 2Y0 3 0> ( 2 3 O) 3
ks 4 2 2 3
F(a4_00_9) - _bizT“l_ b1_§b290+2b300 0_(b2_3b30])0 +b39 (43)

where the constants g; and b, are defined as

a, = i
: bZOC” k3
_ ek

= ary ks
b? 2

as =2k3<k3_15>
200, ky

a. = il

! bzall k3
8y k

b, vk

= bay, ks
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by = —6bay, [k, +kyk,]

2
by = bay, |:_k3 +ky <k3_ 15>:| (44)
and
tanh(bs)

2
k2 :g_kl

1 2
ky =2 —— (k)

30 o0

‘#‘Hx%zkl
ky=—"—

Oy 100K
Y= 0‘110522_05%2 (45)

The same extension-twist relationships (43) could be obtained if the terms of O(¢*?) were
neglected in the strain—displacement relations.

It is useful to obtain a solution based on the classical shell theory assumptions and compare the
resulting extension-twist relations with eqns (43). According to the Kirchhoff-Love assumptions
a straight line element normal to the middle surface in the initial state remains normal to the
deformed middle surface and does not change in length. For small strains this assumption is
expressed by

€=V =7.=0 (46)

After substituting eqns (46) into eqns (15), and neglecting the terms of O(e) compared to one,
the twisting curvature expression reduces to

Ky = U, +20=20 47

which corresponds to the Saint Vénant type warping for a thin strip. Note that eqn (47) can be
obtained neglecting the exponential term in eqn (41). That is, for a thin strip the out-of-plane
strain contribution is associated with the free edge effect only. Substitute eqns (47) and (37) into
eqns (23) and (26) to obtain eqns (43) with constants a; and b, taking the following form

12 3 6
al = 0622 ’ a2 = 0612 ) a3 = 0'3b25 a4 = ’:XIZ
b2a11 Oy b_ofll
24y 4b%u,
bl _bOC”’ b2_0a b3_ 15
1
ky==, k,=3 (43)

ga
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Equations (48) can also be obtained directly from eqns (44) and (45) by neglecting the term
1/(bs) compared to unity. According to eqns (42) and (32), this is equivalent to eliminating the
contribution of the transverse shear stiffness to the extension-twist relations. Note that a material
satisfying eqns (46) can be considered as out-of-plane rigid since out-of-plane stresses are generally
not zero.

It is worth noting that the extension-twist relationships (43) with the coefficients given by
eqns (48), which represent the out-of-plane rigid strip solution, can also be obtained from the
geometrically nonlinear analysis of Hodges et al. (1996). In this analysis, based on an asymptotical
formulation, contribution of the out-of-plane shear is neglected as in the classical laminated plate
theory.

Finally, the following linear extension-twist relations can be derived from eqns (43)

P> Sip S F
0 _ 11 12 (49)
0 S12 S | T
where the compliances, expressed as

al—gazeo +2039% 614—90 k4 1
S Ky = N S =
b, _§b290+2b30(2) 2 b, _gbzeo +2b50; R by _§b200+2b303

S =

(50)

account for a finite pretwist. A comparison between eqns (49) and (50), and other analytical work
is provided in the Application section.

3. Application

The axial force-twist relationship (43) is compared with test data for strips made of ICI Fiberite
T300/954-3 Graphite/Cyanate material system with properties given in Table 1. Two stacking
sequences, [20,/—70,/20,/—20,/70,/—20,] and [30,/—60,/30,/ —30,/60,/—30,];, are used. The
length, the width and the thickness of the laminates are 254, 25.4 and 1.168 mm, respectively. The
strips have an end pretwist angle of 5°. Four specimens of each stacking sequence were tested.
Their manufacturing and testing details are described in Armanios et al. (1996). The results are
presented in Figs 4 and 5 where the absolute values of the end twist angle, 0L, are plotted as a
function of the axial force. The test data are labeled specimens 1-4 in the figures, and the predictions
of eqn (49) (Linear model) are included for comparison.

It is worth noting that the full solution, where the coefficients are given by eqns (44) and (45),
and the out-of-plane rigid strip solution, where the coefficients are defined in eqns (48), are
within 1% relative difference in predictions of the axial force-twist relationship for both stacking
sequences.

Further verification of the accuracy of the closed-form solution is provided by a geometrically
nonlinear finite element simulation. The strips were modeled by 800 quadrilateral shell elements,
S4R, in the ABAQUS code. The total number of degrees of freedom was 5346. The results are
labeled as ABAQUS in Figs 4 and 5. The predictions of eqn (43) are in excellent agreement with
the test data and with the finite element solution.

In addition to the comparison made between the extension-twist relations (43) and analysis of
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Fig. 4. Comparison of model predictions with test data for a [20,/ —70,/20,/ —20,/70,/ —20,] ; strip.
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Fig. 5. Comparison of model predictions with test data for a [30,/ —60,/30,/ — 30,/60,/ — 30,] ;- strip.

Hodges et al. (1996), the predictions of the present analysis are compared to the results from the
linear model of Kosmatka (1991) for pretwisted laminates. This model is the Ritz method based
and applied to the analysis of extension-twist coupling behavior for antisymmetric [0/ — o] angle-
ply laminates with an arbitrarily large pretwist.
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Table 2
Properties of T300/5208 Graphite/Epoxy material
system (Kosmatka, 1991)

E,, =132.2 GPa

E,, = E;; = 10.75 GPa

G, =G =Gy =5.65GPa
Vi, = v;3 = 0.239

vy = 0.4

One can extract the following linear axial strain-twist relationship (no applied torque) from eqns
(49) and (50)

0 = cg, (51)
where
—0
¢ = as— Uy (52)

a, —3a,0,+2a;03

Equation (52) is compared with the solution of Kosmatka (1991) for T300/5208 Graphite/Epoxy
material system with properties provided in Table 2. The laminate thickness is 10% of its width
and the stacking sequence is [ —a/a] . The plots of the twist-extension ratio defined as

&y = 2bc (53)
vs the ply angle o for different values of the pretwist parameter defined as
p = 2b0, (54)

are shown in Fig. 6. The case of p = 0 corresponds to the classical lamination theory prediction
and is included for illustrating the trend in the twist-extension ratio variation with the ply angle.
The predictions of eqn (52), labeled as closed-form in Fig. 6, are in excellent agreement with the
numerical solution.

Next, the compliances defined in eqns (50) are compared with the solution of Kosmatka (1991).
Denote

5(1]1 = Sll|of:p:09 5(2)2 = S22|o<:p:0 (55)

The plots of

51 522

— s12E11(2b)3, 7 (56)
S11 $22

as functions of o for different values of p are presented in Figs 7-9. The case of p = 0 is included
in the figures for trend illustration. The closed-form and the numerical solutions are in excellent
agreement for s7,/s;, and s,,E,;(2b)’. The comparison in Fig. 9 indicates good agreement for
§5,/85, at p = 0.1 and 0.2. However, a maximum discrepancy of 19% exists at p = 0.3 and « = 0.
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Fig. 6. Comparison of closed-form and numerical solutions.
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Fig. 7. Comparison of closed-form and numerical solutions.

A similar discrepancy in the torsional rigidity predictions at p = 0.3 and small ply angles is found
between the closed-form solution and the finite element solution of Cesnik and Hodges (1997). An
investigation into this discrepancy is provided in the following.

In the case of « =0, corresponding to the unidirectional orthotropic strip, the following
expression for s9,/s,, can be obtained from eqns (50)
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Fig. 9. Comparison of closed-form and numerical solutions.
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Fig. 10. Comparison of torsional rigidity predictions.
S(2)f2—1+ E\ 1 ézpz (57)

B tanh(bs) _ 3G,5 (b
ki =1— bs bs =2 /Gl2 <h> (58)

Equation (57) indicates that the torsional rigidity ratio is influenced by the E,,/G, ratio, the out-
of-plane shear stiffness, and the geometry. Setting k, = 1 in eqn (57) is equivalent to neglecting the
contribution of the out-of-plane shear strains. The associated error is 5% at p = 0.3.

It is worth noting that the maximum pretwist considered, p = 0.3, corresponds to strips with
172° per 10 in (172° per 254 mm). For such a pretwist, neglecting the quantity (6,6)* compared to
one causes an acceptable error of 2%. However, the ratio (h/b) = 0.2 is at the limit of the
thin strip assumption; hence, the out-of-plane shear effect could be significant. Indeed, the term
[1/(bs)] = O(h/b) was neglected compared to one in deriving eqns (48) which represent the out-of-
plane rigid strip solution. A model for correcting the out-of-plane shear stiffness is presented in
the Appendix. A comparison of the influence of this correction on the s9,/s,, ratio prediction is
provided in Fig. 10 for flat strips (p = 0) and for strips with p = 0.3. The full solution model in
the figure corresponds to the coefficients defined in eqns (44) and (45). The corrected out-of-plane
shear stiffness is based on eqn (A9) while the out-of-plane rigid strip solution uses the coefficients
in eqns (48). All models show the same trends for the flat strips, but in the highly pretwisted case
neglecting the out-of-plane shear strains gives 27% maximum error relative to the full solution.
For the material system provided in Table 2, the correction to the out-of-plane shear stiffness does
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not result in considerable difference for the torsional rigidity predictions compared to the full
solution, since the lamina out-of-plane shear moduli, G»; and G, are equal. The discrepancy
would be larger for laminates with highly nonhomogeneous shear stiffnesses of plies.

4. Conclusion

A finite displacement model for pretwisted laminated composite strips with extension-twist
coupling is presented. It is shown that consistent with the small strain assumption, the effect of the
terms of O(&*?) in the strain—displacement relations on the results is negligible for typical laminates.
The accuracy of the closed-form extension-twist relationships is assessed through comparison with
test data and with predictions from existing models. It is found that the influence of out-of-plane
shear strains can become significant as the thickness-to-width ratio approaches the limit of the
thin strip assumption.
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Appendix. Out-of-plane shear stiffness (small displacements)

According to the equilibrium equations
axy,y + G.xz,z = 07 a}’y,y + O-y:,z = O (Al)

and the traction free boundary conditions, the out-of-plane shear stresses can be expressed as
follows

., = — r 0y,dz, 0,=— r ,,,dz (A2)
—(/2) —(/2)
The necessary in-plane constitutive relations for a lamina are
O,y = Q_l 28 T sz &, + Q_zc.ny
Oyy = Q_l 6€xx T Q_Zégyy + Q_66y.xy (A3)

where Q,; are components of the lamina stiffness matrix.
For small displacements the expression for the longitudinal strain changes from eqn (15) to

Bax = B0y — 2Ky = & (A4)
and eqn (21) reduces to

N, =0 (AS)
Substitute eqns (20), (A4) and (AS) into eqns (29) to obtain
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0 A12Des— BB By
€y =& = — o eo— | | My
Ay, Dgs— B A3, Dgs— B

A,,Bi¢—A,,B A
Vay = TIZKy = _Z< =2 122 26)80 +z (222> M,, (A6)
Ay, Do — B3 A3, Dge— B

Substitute eqns (A3), (A4), (A6) into eqns (A2), and use the equilibrium eqn (22) to obtain the
following out-of-plane shear stress distribution

0, J - -
Oxv: = 5 (Q26B26—2066A2,) dz
A3, Dgs— B3

—(h/2)

0. : - -
g, =—""— B, —z A,,)dz A7
T 4 Do —B%() 7(1”’2)(Q22 26 016455) (A7)

Note that ¢,. = ¢,. = 0 on the lower and the upper surfaces of the laminate.
The complementary energy due to the out-of-plane shear can be expressed as

L (? Q2 L (? h/2 B B B
U=+ . dy =5 dy (S44O-iz +2S4SO-vzo-xz + S550-32cz) dZ (AS)
2], B 2], —(h)2) '

where f* is the out-of-plane shear stiffness coefficient, and S,,, S5, Sss are components of the
lamina compliance matrix. Substitute eqns (A7) into eqn (A8) to obtain

1 1 h/2 _ _ _
E = (A D B2 )2 J\ " (S445)2': +2S456y20_-x: +S556-,%z) dZ (A9)
22866 — D36 /2)
where
0,. = J (022Brs—201645,)dz, 6. = J (Q26Br6 —2046A5,) dz (A10)
—(h/2) —(h/2)
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