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Abstract

A _nite displacement analysis for extension!twist coupling in pretwisted laminated composite strips is
presented[ A new formulation of the kinematics is constructed by neglecting the terms of order of the square
of the maximum strain magnitude in the strainÐdisplacement relations[ The closed!form extension!twist
relationships are derived and the in~uence of out!of!plane shear strains on the results is estimated[ The
accuracy of the model is assessed through comparison with test data and analytical predictions[ Þ 0887
Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Elastic tailoring of composites allows a unique ~exibility to meet the design requirements
e.ciently and economically[ Coupling of deformation modes such as extension!twist and bending!
twist can be created in composite structures by an appropriate selection of material\ geometry\ and
stacking sequence[ In order to implement elastic tailoring in practical applications\ an accurate
prediction of their response under loading is required[

Extension!twist coupling in laminated composite strips can be created by using antisymmetric
stacking sequences[ Such laminates will twist when subjected to axial load[ Test data for thin strip
laminates with such stacking sequences show a nonlinear axial force!twist dependence[ This is due
to the low torsional to extensional sti}ness ratio and cannot be predicted using the small dis!
placement theories[ In order to explain this nonlinear behavior\ a _nite displacement model was
developed by Armanios et al[ "0885#[ The closed!form solution developed in this model was in
good agreement with other analytical results and test data[ In developing the model\ the terms in
the strainÐdisplacement relations were classi_ed by the order of their maximum magnitude[ The
maximum magnitude of strain was denoted by o[ First\ the terms of order o were neglected
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compared to unity[ Second\ the terms of order o2:1 and higher were neglected[ In order to provide
a consistent analysis\ it is important to investigate the in~uence of the higher order terms in the
strainÐdisplacement relations on the results[ This work presents a closed!form solution for the
extension!twist behavior of pretwisted thin laminated strips neglecting the terms of O"o1# and
higher in the strainÐdisplacement relationships\ and assesses the accuracy of the previous model[

1[ Analysis

Consider a laminated strip shown in Fig[ 0[ The thickness h of the laminate is small relative to
the width 1b which is small compared to the length L[ That is

h ð 1b ð L "0#

The strip has a pretwist about the longitudinal axis X[ Assume that the strains are small
"negligible compared to one# and independent of the longitudinal direction^ the pretwist rate u9

and the elastic twist rate u are constant^ and the material is linearly elastic[
The middle surface of the strip is referred to the material coordinates x and y\ while the transverse

material coordinate is denoted by z[ If the strip is ~at\ the position vector of an arbitrary point is
de_ned as

rf � xi¼¦yj¼¦zk¼ \ 9 ¾ x ¾ L\ −b ¾ y ¾ b\ −
h
1

¾ z ¾
h
1

"1#

where i¼\ j¼\ k¼ are the unit base vectors of the reference Cartesian coordinate system XYZ[ The

Fig[ 0[ Laminate geometry[



A[ Makeev\ E[ Armanios : International Journal of Solids and Structures 25 "0888# 0970Ð0987 0972

position vector r9 of a material point in the initial state is derived as follows[ First\ a rigid cross!
section is rotated about the X!axis[ Second\ the out!of!plane strains caused by the previous step
are set to zero by rotating straight line elements perpendicular to the middle surface[ The result is

r9 � 0x−
u9yz

z0¦"u9y#11 i¼−ye¼19¦
z

z0¦"u9y#1
e¼29 "2#

where

e¼19 � cos u9xj¼¦sin u9xk¼

e¼29 � −sin u9xj¼¦cos u9xk¼ "3#

The position vector r of the material point in the deformed state is derived the same way as in
the initial state[ However\ a small displacement _eld is added to account for all strain components

r � 0x−
"u9¦u#yz

z0¦"u9¦u#1y1
¦u1 i¼¦"y¦v#e¼1¦0

z

z0¦"u9¦u#1y1
¦w1 e¼2 "4#

where

e¼1 � cos"u9¦u#xj¼¦sin"u9¦u#xk¼

e¼2 � −sin"u¦u9#xj¼¦cos"u9¦u#xk¼ "5#

and

u � o9x¦U"y\ z#\ v � V"y\ z#\ w � W"y\ z# "6#

are the components of the small displacement vector[
The Lagrangian strain tensor components are de_ned as

1oij � `ij−hij "7#

where `ij and hij are the metric tensor components in the deformed and the initial states\ respectively

`ij �
1r

1xi
=
1r

1xj

hij �
1r9

1xi
=
1r9

1xj
"8#

The following limits are imposed on the maximum values of the kinematic parameters

u9h\ uh � O"o#

"u9b#1\ "ub#1 � O"o#

1U
1y

\
1U
1z

\
1V
1y

\
1V
1z

\
1W
1y

\
1W
1z

� O"o#

u9V\ u9W\ uV\ uW � O"o2:1# "09#
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where o denotes the maximum magnitude of strain[ The terms of O"o1# and higher will be neglected
in the strainÐdisplacement relations[

According to eqns "2#Ð"09#\ the out!of!plane engineering strains can be expressed as

ozz � W\z−"u9¦u#yU\z

gyz � W\y¦V\z−"u9¦u#yU\y

gxz � U\z¦"u9¦u#"−yo9¦yW\z¦V−zV\z# "00#

where the partial derivatives are denoted by commas[
Since the strip is thin\ the out!of!plane shear strains are replaced by their average values with

respect to thickness

gyz � gyz"y#\ gxz � gxz"y# "01#

Moreover\ nondeformability in the z!material direction is assumed\ i[e[

ozz � 9 "02#

Substitute eqns "01# and "02# into eqns "00#\ integrate the resulting expressions\ and neglect the
terms of O"o1# to obtain the following linear in z form of the small displacement _eld

U � U9"y#−zU0"y#

V � V9"y#−zV0"y#

W � W9"y#−z"u9¦u#yU0"y# "03#

According to eqns "2#Ð"8#\ and "03#\ the engineering strainÐdisplacement relationships take the
form

oij � o9
ij−zkij\ "i\ j � x\ y\ z#

o9
xx � o9¦

0
1
"u1¦1u9u#y1\ kxx � 9

o9
yy � V9\y\ kyy � V0\y

ozz � 9

gyz � −V0¦W9\y−"u9¦u#yU9\y

gxz � −U0¦"u9¦u#"V9−o9y#

g9
xy � U9\y¦"u9¦u#"yW9\y−W9#\ kxy � U0\y¦1u "04#

The equilibrium equations and boundary conditions for a cantilever strip subjected to an axial
force F and a torque T can be derived using the principle of virtual work

g
b

−b

dy g
h:1

−"h:1#

sijdoijz` dz−Tdu−Fdo9 � 9 "05#

where sij are the second PiolaÐKirchho} stress tensor components[ Summation over the repeated
indices is assumed[ The Jacobian
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z` �
1r9

1x
= 0

1r9

1y
×

1r9

1z 1� 0 "06#

if the terms of O"o# are neglected compared to unity[ Denote the forces and moments per unit
length of the middle surface by

"Nxx\ Nyy\ Qy\ Qx\ Nxy\ Mxx\ Myy\ Mxy# � g
h:1

−"h:1#

"sxx\ syy\ syz\ sxz\ sxy\ zsxx\ zsyy\ zsxy# dz "07#

where the subscripts do not denote covariant tensor components[
The lateral surfaces of the strip are traction free[ Therefore\ at y � 2b

Nyy � Nxy � Qy � Myy � Mxy � 9 "08#

Substitute eqns "04#\ "06#Ð"08# into eqn "05#\ and reduce the resulting equilibrium equations
and boundary conditions to

Nxy � Qy � Myy � 9 "19#

Nyy �"u9¦u#Mxy "10#

Mxy\y−Qx � 9 "11#

g
b

−b

ðNxx"u9¦u#y1−1MxyŁ dy � T "12#

g
b

−b

ðNxx¦"u9¦u#MxyŁ dy � F "13#

where o9 and V9\y � o9
yy were neglected compared to one in deriving eqn "12#[ According to eqn

"12#\ eqn "13# can be written in the following form

F � g
b

−b $Nxx¦"u9¦u#Mxy¦
"u9¦u#1y1

1
Nxx−

"u9¦u#1y1

1
Nxx% dy

� g
b

−b

Nxx $0¦
"u9¦u#1y1

1 % dy−
"u9¦u#

1
T "14#

Neglect ð"u9¦u#1y1Ł:1 compared to one to obtain

g
b

−b

Nxx dy � F¦
"u9¦u#

1
T "15#

It is worth noting that if the applied torque T is equal to zero\ the boundary conditions "12# and
"15# can be derived by neglecting the terms of O"o2:1# in the strainÐdisplacement relations "04#[

Assume that the constitutive relations are given in local rectangular Cartesian coordinates[
Although the base vectors
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1r9

1x
\

1r9

1y
\

1r9

1z
"16#

of the material coordinate system "x\ y\ z# in the initial state are not orthogonal\ transformation to
the orthogonal coordinates would introduce correction of O"o1# in the strain _eld as shown in
Armanios et al[ "0885#[

Equation "02# implies that for each lamina

E22 : �\ n02 � n12 � 9 "17#

where E22\ n02 and n12 are Young|s modulus and Poisson|s ratios associated with the transverse
material direction[ Indices 0\ 1\ 2 denote the principal material axes[ Therefore\ the in!plane
components of the lamina sti}ness matrix are the same as those for the plane stress state[

The constitutive relations for an antisymmetric laminate can be written in the following form

8
Nxx

Nyy

Mxy
9� &

A00 A01 B05

A01 A11 B15

B05 B15 D55
' 8

o9
xx

o9
yy

−kxy
9 "18a#

8
Nxy

Mxx

Myy
9� &

A55 B05 B15

B05 D00 D01

B15 D01 D11
' 8

g9
xy

−kxx

−kyy
9

Qy � A33gyz\ Qx � A44gxz "18b#

The sti}ness parameters are de_ned as

"Aij\ Bij\ Dij# � g
h:1

−"h:1#

QÞij"0\ z\ z1# dz "29#

where QÞij are the components of the lamina sti}ness matrix in the "x\ y\ z#!coordinates "Vinson
and Sierakowski\ 0875#[

The axial force Nxx and the twisting moment Mxy per unit length of the middle surface will be
expressed in terms of the axial strain and the twist rate[ The resulting equations will be substituted
into the boundary conditions "12# and "15# to get the extension!twist relationships[ It is worth
noting that the quantities

B05

A01

"u9¦u#\
B15

A11

"u9¦u#\
a01

b
"u9¦u#\

a01

a00

"u9¦u#\ X
a11

b
"u9¦u#\ X

D55

A01

"u9¦u# "20#

where aij and b are de_ned by

a00 � A00−
A1

01

A11

\ a01 � B05−
A01B15

A11

a11 � D55−
B1

15

A11
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Fig[ 1[ Estimation of parameters[

b � A44 "21#

can be neglected compared to one for a practical material system[ A numerical veri_cation of this
observation is provided in Figs 1 and 2 where the absolute values of

B05

A01h
\

B15

A11h
\

a01

bh
\

a01

a00h
\ X

a11

b

0
h

\ and X
D55

A01

0
h

Fig[ 2[ Estimation of parameters[
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Table 0
Properties of T299:843!2 Graphite: Cyanate
material system

E00 � 024[5 GPa
E11 � 8[8 GPa
G01 � G02 � 3[1 GPa
G12 � 1[4 GPa
n01 � 9[2

are plotted vs the ply angle a for angle ply laminates ðan:−anŁT[ The laminates are made of ICI
Fiberite T299:843!2 Graphite:Cyanate material system with properties given in Table 0[ The
absolute values of the variables in Figs 1 and 2 are of O"0#[ When multiplied by "u9¦u#h\ as in
"20#\ those quantities will be of O"o# according to eqns "09#[

Substitute for Nyy and Mxy from eqn "18a# into eqn "10# to obtain

o9
yy � −$

A01−"u9¦u#B05

A11−"u9¦u#B15% o9
xx−$

B15−"u9¦u#D55

A11−"u9¦u#B15%"−kxy# "22#

Neglect

"u9¦u#B05

A01

\
"u9¦u#B15

A11

"23#

as terms of O"o# compared to one\ and rewrite eqn "22# as follows

o9
yy � −

A01

A11 $o9
xx¦

"u9¦u#D55kxy

A01 %−
B15

A11

"−kxy# "24#

One can further simplify eqn "24# by neglecting the term ð"u9¦u#D55kxyŁ:A01 of O"o1#[ The result is

o9
yy � −

A01

A11

o9
xx−

B15

A11

"−kxy# "25#

According to eqns "04# and "25#\ eqns "18a# and "18c# reduce to

6
Nxx

Mxy7� $
a00 a01

a01 a11% 6
o9¦

0
1
"u1¦1u9u#y1

−U0\y−1u 7 "26#

Qx � −b $U0¦
A01

A11

"u9¦u#"u1¦1u9u#
y2

5
¦6o9 00¦

A01

A111−1u
B15

A117"u9¦u#y% "27#

A more accurate estimate for the out!of!plane shear sti}ness coe.cient\ b\ is derived in the
Appendix by integrating equilibrium equations through the thickness[

Substitute eqns "26# and "27# into eqn "11# to obtain
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a11

b
U0\yy−U0 �

A01

A11

"u9¦u#"u1¦1u9u#
y2

5
¦$

a01

b
"u1¦1u9u#¦00¦

A01

A111"u9¦u#o9

−1u"u9¦u#
B15

A11% y "28#

Solve eqn "28# with the free edge boundary conditions

Mxy =y�2b � 9 "39#

to get the following expression for the twisting curvature

kxy � U0\y¦1u �
cosh"sy#
cosh"sb# $

a01

a11

o9−1u¦
a01

a11

b1

1
"u1¦1u9u#%¦1u "30#

where

s �X
b

a11

"31#

It is worth noting that the same result for the twisting curvature in eqn "30# could be obtained by
neglecting the terms of O"o2:1# in the strainÐdisplacement relations "04#[

Substitute eqns "30# and "26# into eqns "12# and "15#\ integrate\ solve for o9 and F\ to obtain the
following extension!twist relationships

o9"a3−u9−u# � −
0

1b2a00k2

T¦0a0−
3
2

a1u9¦1a2u
1
91 u−"a1−2a2u9#u1¦a2u

2

F"a3−u9−u# � −
k3

b1
T¦0b0−

3
2

b1u9¦1b2u
1
91 u−"b1−2b2u0#u1¦b2u

2 "32#

where the constants ai and bi are de_ned as

a0 �
3a11

b1a00

k0

k2

a1 � −
2a01

a00

k1

k2

a2 �
b1

1k2 0k2−
1
041

a3 �
1a01

b1a00

k0

k2

b0 �
7c

ba00

k0

k2
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b1 � −5ba01 ðk0¦k1k3Ł

b2 � b2a00 $−k2¦k3 0k2−
1
041% "33#

and

k0 � 0−
tanh"bs#

bs

k1 �
1
2

−k0

k2 �
0
2

−
a1

01

a00a11

"0−k0#

k3 �
c¦a1

01k0

a00a11k2

c � a00a11−a1
01 "34#

The same extension!twist relationships "32# could be obtained if the terms of O"o2:1# were
neglected in the strainÐdisplacement relations[

It is useful to obtain a solution based on the classical shell theory assumptions and compare the
resulting extension!twist relations with eqns "32#[ According to the Kirchho}ÐLove assumptions
a straight line element normal to the middle surface in the initial state remains normal to the
deformed middle surface and does not change in length[ For small strains this assumption is
expressed by

ozz � gyz � gxz � 9 "35#

After substituting eqns "35# into eqns "04#\ and neglecting the terms of O"o# compared to one\
the twisting curvature expression reduces to

kxy � U0\y¦1u 3 1u "36#

which corresponds to the Saint Ve�nant type warping for a thin strip[ Note that eqn "36# can be
obtained neglecting the exponential term in eqn "30#[ That is\ for a thin strip the out!of!plane
strain contribution is associated with the free edge e}ect only[ Substitute eqns "36# and "26# into
eqns "12# and "15# to obtain eqns "32# with constants ai and bi taking the following form

a0 �
01a11

b1a00

\ a1 �
2a01

a00

\ a2 � 9[2b1\ a3 �
5a01

b1a00

b0 �
13c

ba00

\ b1 � 9\ b2 �
3b2a00

04

k2 �
0
2

\ k3 � 2 "37#
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Equations "37# can also be obtained directly from eqns "33# and "34# by neglecting the term
0:"bs# compared to unity[ According to eqns "31# and "21#\ this is equivalent to eliminating the
contribution of the transverse shear sti}ness to the extension!twist relations[ Note that a material
satisfying eqns "35# can be considered as out!of!plane rigid since out!of!plane stresses are generally
not zero[

It is worth noting that the extension!twist relationships "32# with the coe.cients given by
eqns "37#\ which represent the out!of!plane rigid strip solution\ can also be obtained from the
geometrically nonlinear analysis of Hodges et al[ "0885#[ In this analysis\ based on an asymptotical
formulation\ contribution of the out!of!plane shear is neglected as in the classical laminated plate
theory[

Finally\ the following linear extension!twist relations can be derived from eqns "32#

6
o9

u 7� $
s00 s01

s01 s11% 6
F

T7 "38#

where the compliances\ expressed as

s00 �
a0−

3
2
a1u9¦1a2u

1
9

b0−
3
2
b1u9¦1b2u

1
9

\ s01 �
a3−u9

b0−
3
2
b1u9¦1b2u

1
9

\ s11 �
k3

b1

0

b0−
3
2
b1u9¦1b2u

1
9

"49#

account for a _nite pretwist[ A comparison between eqns "38# and "49#\ and other analytical work
is provided in the Application section[

2[ Application

The axial force!twist relationship "32# is compared with test data for strips made of ICI Fiberite
T299:843!2 Graphite:Cyanate material system with properties given in Table 0[ Two stacking
sequences\ ð191:−693:191:−191:693:−191ŁT and ð291:−593:291: −291:593:−291ŁT\ are used[ The
length\ the width and the thickness of the laminates are 143\ 14[3 and 0[057 mm\ respectively[ The
strips have an end pretwist angle of 4>[ Four specimens of each stacking sequence were tested[
Their manufacturing and testing details are described in Armanios et al[ "0885#[ The results are
presented in Figs 3 and 4 where the absolute values of the end twist angle\ uL\ are plotted as a
function of the axial force[ The test data are labeled specimens 0Ð3 in the _gures\ and the predictions
of eqn "38# "Linear model# are included for comparison[

It is worth noting that the full solution\ where the coe.cients are given by eqns "33# and "34#\
and the out!of!plane rigid strip solution\ where the coe.cients are de_ned in eqns "37#\ are
within 0) relative di}erence in predictions of the axial force!twist relationship for both stacking
sequences[

Further veri_cation of the accuracy of the closed!form solution is provided by a geometrically
nonlinear _nite element simulation[ The strips were modeled by 799 quadrilateral shell elements\
S3R\ in the ABAQUS code[ The total number of degrees of freedom was 4235[ The results are
labeled as ABAQUS in Figs 3 and 4[ The predictions of eqn "32# are in excellent agreement with
the test data and with the _nite element solution[

In addition to the comparison made between the extension!twist relations "32# and analysis of
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Fig[ 3[ Comparison of model predictions with test data for a ð191:−693:191:−191:693:−191ŁT strip[

Fig[ 4[ Comparison of model predictions with test data for a ð291:−593:291:−291:593:−291ŁT strip[

Hodges et al[ "0885#\ the predictions of the present analysis are compared to the results from the
linear model of Kosmatka "0880# for pretwisted laminates[ This model is the Ritz method based
and applied to the analysis of extension!twist coupling behavior for antisymmetric ða:−aŁT angle!
ply laminates with an arbitrarily large pretwist[



A[ Makeev\ E[ Armanios : International Journal of Solids and Structures 25 "0888# 0970Ð0987 0982

Table 1
Properties of T299:4197 Graphite:Epoxy material
system "Kosmatka\ 0880#

E00 � 021[1 GPa
E11 � E22 � 09[64 GPa
G01 � G02 � G12 � 4[54 GPa
n01 � n02 � 9[128
n12 � 9[3

One can extract the following linear axial strain!twist relationship "no applied torque# from eqns
"38# and "49#

u � co9 "40#

where

c �
a3−u9

a0−
3
2
a1u9¦1a2u

1
9

"41#

Equation "41# is compared with the solution of Kosmatka "0880# for T299:4197 Graphite:Epoxy
material system with properties provided in Table 1[ The laminate thickness is 09) of its width
and the stacking sequence is ð−a:aŁT[ The plots of the twist!extension ratio de_ned as

j9 � 1bc "42#

vs the ply angle a for di}erent values of the pretwist parameter de_ned as

p � 1bu9 "43#

are shown in Fig[ 5[ The case of p � 9 corresponds to the classical lamination theory prediction
and is included for illustrating the trend in the twist!extension ratio variation with the ply angle[
The predictions of eqn "41#\ labeled as closed!form in Fig[ 5\ are in excellent agreement with the
numerical solution[

Next\ the compliances de_ned in eqns "49# are compared with the solution of Kosmatka "0880#[
Denote

s9
00 � s00 =a�p�9\ s9

11 � s11 =a�p�9 "44#

The plots of

s9
00

s00

\ s01E00"1b#2\
s9
11

s11

"45#

as functions of a for di}erent values of p are presented in Figs 6Ð8[ The case of p � 9 is included
in the _gures for trend illustration[ The closed!form and the numerical solutions are in excellent
agreement for s9

00:s00 and s01E00"1b#2[ The comparison in Fig[ 8 indicates good agreement for
s9
11:s11 at p � 9[0 and 9[1[ However\ a maximum discrepancy of 08) exists at p � 9[2 and a � 9[
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Fig[ 5[ Comparison of closed!form and numerical solutions[

Fig[ 6[ Comparison of closed!form and numerical solutions[

A similar discrepancy in the torsional rigidity predictions at p � 9[2 and small ply angles is found
between the closed!form solution and the _nite element solution of Cesnik and Hodges "0886#[ An
investigation into this discrepancy is provided in the following[

In the case of a � 9\ corresponding to the unidirectional orthotropic strip\ the following
expression for s9

11:s11 can be obtained from eqns "49#
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Fig[ 7[ Comparison of closed!form and numerical solutions[

Fig[ 8[ Comparison of closed!form and numerical solutions[
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Fig[ 09[ Comparison of torsional rigidity predictions[

s9
11

s11

� 0¦0
E00

G011
0

04k0 0
b
h1

1

p1 "46#

where

k0 � 0−
tanh"bs#

bs
\ bs � 1X

2G02

G01 0
b
h1 "47#

Equation "46# indicates that the torsional rigidity ratio is in~uenced by the E00:G01 ratio\ the out!
of!plane shear sti}ness\ and the geometry[ Setting k0 � 0 in eqn "46# is equivalent to neglecting the
contribution of the out!of!plane shear strains[ The associated error is 4) at p � 9[2[

It is worth noting that the maximum pretwist considered\ p � 9[2\ corresponds to strips with
061> per 09 in "061> per 143 mm#[ For such a pretwist\ neglecting the quantity "u9b#1 compared to
one causes an acceptable error of 1)[ However\ the ratio "h:b# � 9[1 is at the limit of the
thin strip assumption^ hence\ the out!of!plane shear e}ect could be signi_cant[ Indeed\ the term
ð0:"bs#Ł � O"h:b# was neglected compared to one in deriving eqns "37# which represent the out!of!
plane rigid strip solution[ A model for correcting the out!of!plane shear sti}ness is presented in
the Appendix[ A comparison of the in~uence of this correction on the s9

11:s11 ratio prediction is
provided in Fig[ 09 for ~at strips "p � 9# and for strips with p � 9[2[ The full solution model in
the _gure corresponds to the coe.cients de_ned in eqns "33# and "34#[ The corrected out!of!plane
shear sti}ness is based on eqn "A8# while the out!of!plane rigid strip solution uses the coe.cients
in eqns "37#[ All models show the same trends for the ~at strips\ but in the highly pretwisted case
neglecting the out!of!plane shear strains gives 16) maximum error relative to the full solution[
For the material system provided in Table 1\ the correction to the out!of!plane shear sti}ness does
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not result in considerable di}erence for the torsional rigidity predictions compared to the full
solution\ since the lamina out!of!plane shear moduli\ G12 and G02\ are equal[ The discrepancy
would be larger for laminates with highly nonhomogeneous shear sti}nesses of plies[

3[ Conclusion

A _nite displacement model for pretwisted laminated composite strips with extension!twist
coupling is presented[ It is shown that consistent with the small strain assumption\ the e}ect of the
terms of O"o2:1# in the strainÐdisplacement relations on the results is negligible for typical laminates[
The accuracy of the closed!form extension!twist relationships is assessed through comparison with
test data and with predictions from existing models[ It is found that the in~uence of out!of!plane
shear strains can become signi_cant as the thickness!to!width ratio approaches the limit of the
thin strip assumption[
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Appendix[ Out!of!plane shear stiffness "small displacements#

According to the equilibrium equations

sxy\y¦sxz\z � 9\ syy\y¦syz\z � 9 "A0#

and the traction free boundary conditions\ the out!of!plane shear stresses can be expressed as
follows

sxz � −g
z

−"h:1#

sxy\y dz\ syz � −g
z

−"h:1#

syy\y dz "A1#

The necessary in!plane constitutive relations for a lamina are

syy � QÞ01oxx¦QÞ11oyy¦QÞ15gxy

sxy � QÞ05oxx¦QÞ15oyy¦QÞ55gxy "A2#

where QÞij are components of the lamina sti}ness matrix[
For small displacements the expression for the longitudinal strain changes from eqn "04# to

oxx � o9
xx−zkxx � o9 "A3#

and eqn "10# reduces to

Nyy � 9 "A4#

Substitute eqns "19#\ "A3# and "A4# into eqns "18# to obtain
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oyy � o9
yy � −0

A01D55−B05B15

A11D55−B1
15 1 o9−0

B15

A11D55−B1
151Mxy

gxy � −zkxy � −z 0
A11B05−A01B15

A11D55−B1
15 1 o9¦z 0

A11

A11D55−B1
151Mxy "A5#

Substitute eqns "A2#\ "A3#\ "A5# into eqns "A1#\ and use the equilibrium eqn "11# to obtain the
following out!of!plane shear stress distribution

sxz �
Qx

A11D55−B1
15 g

z

−"h:1#

"QÞ15B15−zQÞ55A11# dz

syz �
Qx

A11D55−B1
15 g

z

−"h:1#

"QÞ11B15−zQÞ15A11# dz "A6#

Note that syz � sxz � 9 on the lower and the upper surfaces of the laminate[
The complementary energy due to the out!of!plane shear can be expressed as

Uc �
L
1 g

b

−b

Q1
x

b�
dy �

L
1 g

b

−b

dy g
h:1

−"h:1#

"SÞ33s
1
yz¦1SÞ34syzsxz¦SÞ44s

1
xz# dz "A7#

where b� is the out!of!plane shear sti}ness coe.cient\ and SÞ33\ SÞ34\ SÞ44 are components of the
lamina compliance matrix[ Substitute eqns "A6# into eqn "A7# to obtain

0
b�

�
0

"A11D55−B1
15#1 g

h:1

−"h:1#

"SÞ33s¹
1
yz¦1SÞ34s¹ yzs¹ xz¦SÞ44s¹

1
xz# dz "A8#

where

s¹ yz � g
z

−"h:1#

"QÞ11B15−zQÞ15A11# dz\ s¹ xz � g
z

−"h:1#

"QÞ15B15−zQÞ55A11# dz "A09#
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